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Why Capsule Networks?



Capsule Networks by Hinton
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Hierarchical model of the visual system

HMax Model, Riesenhuber and Poggio (1999)

dotted line selects max pooled features from lower layer

Slides heavily inspired by Charles Martin presentation
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Hierarchical model of the visual system

Pooling proposed by Hubel and Wiesel in 1962

A. Receptive field (RF) of simple
cell (green) formed by pooling
over (center-surround) cells
(yellow) in the same
orientation row

B. RF of complex cell (green)
formed by pooling over
simple cells.

Slides heavily inspired by Charles Martin presentation
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Hierarchical model of the visual system

ConvNets resemble hierarchical models (but notice the hyper-column)
Slides heavily inspired by Charles Martin presentation

5



The problem with CNNs and Max-Pooling
The brain embeds things in rectangular space (?), then:

• Translation is easy; Rotation is hard
• Experiment: time for mind to process rotation ∼ amount

ConvNets:

• The pooling operation loses precise spatial
relationships between higher-level objects

• Pooling introduced small amounts of crude
translational invariance at each level

• No explicit pose (orientation) information
• Can not distinguish left from right

A vision system needs to use the same knowledge at all locations in the image
Slides heavily inspired by Charles Martin presentation 6



2 streams hypothesis: what and where

Ventral: what objects are

Dorsal: where objects are in space

idea dates back to 1968

How do we know? Neurological disorders

Simultanagnosia: can only see one object at a time

lots of other evidence as well

Slides heavily inspired by Charles Martin presentation
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Cortical Microcolumns

• Column through cortical layers of the
brain 80-120 neurons (2X long in V1)
share the same receptive field

• Capsules may encode: orientation,
scale, velocity, color, etc.

part of Hubel and Wiesel, Nobel Prize 1981

Slides heavily inspired by Charles Martin presentation
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Canonical object based frames of reference: Hinton 1981

A kind of inverse computer graphics

Hinton has been thinking about this a long time

Slides heavily inspired by Charles Martin presentation
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Inverse Computer Graphics

Hinton proposes that our brain does a kind-of inverse computer graphics transformation.

Slides heavily inspired by Charles Martin presentation
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Invariance and Equivariance

• Invariance makes a classifier tolerant to small changes
in the viewpoint. The idea of pooling is that it creates
“summaries” of each sub-region. It also gives you a
little bit of positional and translational invariance in
object detection. This invariance also leads to
triggering false positive for images which have the
components of a recognized object but not in the
correct order.

• Equivariance is invariance under a Symmetry and
Transformations (translation, rotation, reflection and
dilation). It makes a classifier understand the rotation
or proportion change and adapt itself accordingly so
that the spatial positioning inside an image, including
relationships with other components, is not lost.

Figure 1: Useful
Invariance

Figure 2: Problematic
Invariance

As we discussed before, max pooling provides spatial Invariance, but Hinton argues
that we need spatial Equivariance.
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What is a Capsule and how does
it work?



Capsule

Instead of aiming for viewpoint invariance in the activities of ”neurons” that
use a single scalar output to summarize the activities of a local pool of
replicated feature detectors, artificial neural networks should use local ”cap-
sules”.

• A capsule is a group of neurons that not only capture the likelihood but also the
attributes of a specific feature.

• The output of a capsule can be encoded using a vector and it outputs two
things:

1. the probability that the entity is present within its limited domain
(expressed as the length of the vector)

2. a set of ”instantiation parameters” or in other words the generalized pose
of the object. This set may include the precise position, lighting or
deformation of the visual entity relative to an implicitly defined canonical
version of that entity
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A Toy Example

Slides heavily inspired by Aurélien Géron presentation
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Primary Capsules

Slides heavily inspired by Aurélien Géron presentation
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Predict Next Layer’s Output

Slides heavily inspired by Aurélien Géron presentation
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Predict Next Layer’s Output

Slides heavily inspired by Aurélien Géron presentation
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Predict Next Layer’s Output

Slides heavily inspired by Aurélien Géron presentation
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Routing by Agreement

Slides heavily inspired by Aurélien Géron presentation
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Clusters of Agreement

Slides heavily inspired by Aurélien Géron presentation
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Clusters of Agreement

Slides heavily inspired by Aurélien Géron presentation
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Clusters of Agreement

Slides heavily inspired by Aurélien Géron presentation
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Clusters of Agreement

Slides heavily inspired by Aurélien Géron presentation
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Clusters of Agreement

Slides heavily inspired by Aurélien Géron presentation

23



Clusters of Agreement

Slides heavily inspired by Aurélien Géron presentation
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How does a capsule works?

• W encodes important spatial and other relationships between lower level
features and higher level feature

• Squash Function: “Squash” vector to have length of no more than 1, without
changing the direction

vj =
||sj||2

1+ ||sj||2
sj

||sj||
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Routing Weights

Slides heavily inspired by Aurélien Géron presentation
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Compute Next Layer’s Output

Slides heavily inspired by Aurélien Géron presentation
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Compute Next Layer’s Output

Slides heavily inspired by Aurélien Géron presentation
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Update Routing Weights

Slides heavily inspired by Aurélien Géron presentation
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Update Routing Weights

Slides heavily inspired by Aurélien Géron presentation
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Routing Weights

Slides heavily inspired by Aurélien Géron presentation
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Routing Weights

Slides heavily inspired by Aurélien Géron presentation
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Compute Next Layer’s Output

Slides heavily inspired by Aurélien Géron presentation
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Dynamic Routing Between Capsules

Lower level capsule will send its input to the higher level capsule that “agrees” with its
input. This is the essence of the dynamic routing algorithm.

• Similar to k-means algorithm, the dynamic routing tries to find clusters of
agreement between input capsules relative to each output capsule using the dot
product similarity measure and updating the routing coefficients
correspondingly

• More iterations tends to overfit the data
• It is recommended to use 3 routing iterations in practice
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Capsule vs Traditional Neuron
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Capsule Equivariance

• If the detected feature moves around the image or its state somehow changes, the
probability still stays the same

• This is what Hinton refers to as activities equivariance: neuronal activities will change when
an object ”moves over the manifold of possible appearances” in the picture. At the same
time, the probabilities of detection remain constant, which is the form of invariance that we
should aim at, and not the type offered by CNNs with max pooling.
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CapsNet Architecture
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CapsNet Architecture

1. Layer 1 - Convolutional layer: its job is to detect basic features in the 2D image. In the
CapsNet, the convolutional layer has 256 kernels with size of [9×9×1] and stride 1, followed
by ReLU activation. The output of this network is [20×20×256] features maps in MNIST.

2. Layer 2 - PrimaryCaps layer: this layer has 32 primary capsules whose job is to take basic
features detected by the convolutional layer and produce combinations of the features. The
layer has 32 “primary capsules” that are very similar to convolutional layer in their nature
(with squash function at the end for non-linearity). Each capsule applies eight [9×9×256]
convolutional kernels (with stride 2) to the [20×20×256] input volume and therefore
produces [6×6×8] output tensor. Since there are 32 such capsules, the output volume has
shape of [32×6×6×8] or reshaped [1152×8].

3. Layer 3 - DigitCaps layer: this layer has 10 digit capsules, one for each digit. Each capsule
takes as input a [6×6×8×32] tensor. You can think of it as [6×6×32] 8-dimensional vectors,
which is 1152 input vectors in total. As per the inner workings of the capsule, each of these
input vectors gets their own [8×16] transformation matrix Wij that maps 8-dimensional
input space to the 16-dimensional capsule output space. So, there are 1152 matrices for each
capsule, and also 1152 c coefficients and 1152 b coefficients used in the dynamic routing.
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Margin Loss Function + Reconstruction as regularizer

The authors, along with the CapsNet loss they
introduced reconstruction loss as a
regularization method. The loss is defined as the
MSE with the original image.

The total loss is defined as:

Ltotal =
C∑
c=1

Lc + 0.0005 ∗ Lreg
39



Results

The authors argue that the capsules are successfully learn to span the space of
variations, in the way digits of that class are instantiated. For example:

• MNIST: 0.25% test error

• CIFAR10: 10.6% test error (the authors state that is about what standard
convolutional nets achieved when they were first applied to the dataset)
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Segmenting highly overlapping digits
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Matrix Capsules With EM Routing



What’s different

Recap:
A capsule is a group of neuronswhose output represents different properties
of the same entity.

General ideas differ from the original paper:

• Activity Vector→ Pose Matrix + Activity Probability

• Dynamic Routing→ EM Routing
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Matrix Capsule

• A matrix capsule captures the activation (likeliness) similar to that of a neuron,
but also captures a 4x4 pose matrix.

• In computer graphics, a pose matrix defines the translation and the rotation of
an object which is equivalent to the change of the viewpoint of an object.

• An example:

• Of course, just like other deep learning methods, this is the intention and it is
never guaranteed.
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EM Routing By Agreement

• The objective of the EM (Expectation Maximization) routing is to group capsules
to form a part-whole relationship using a clustering technique (EM).

• In machine learning, we use EM clustering to cluster datapoints into Gaussian
distributions.

• A higher level feature is detected by looking for agreement between votes from
the capsules one layer below. A vote vij for the parent capsule j from capsule i is
computed by multipling the pose matrix Mi of capsule i with a viewpoint
invariant transformation Wij .

vij = MiWij

• The probability that a capsule i is grouped into capsule j as a part-whole
relationship is based on the proximity of the vote vij to other votes (vo1 j. . .vok j)
from other capsules. Wij is learned discriminatively through a cost function and
the backpropagation.
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Calculate capsule activation and pose matrix
In EM routing, each capsule in the higher-layer corresponds to a Gaussian and the pose of each
active capsule in the lower-layer (converted to a vector) corresponds to a data-point (or a fraction
of a data-point if the capsule is partially active). The pose matrix is a 4×4 matrix, i.e. 16
components. We model the pose matrix with a Gaussian having 16 µ and 16 σ and each µ

represents a pose matrix’s component.

Let vij be the vote from capsule i for the parent capsule j, and vhij be its h-th component. We apply
the probability density function of a Gaussian

P(x) =
1

σ
√
2π

e−(x−µ)2/2σ2

to compute the probability of vhij belonging to the capsule j’s Gaussian model:

phi|j =
1√

2π(σhj )2
exp (−

(vhij − µhj )
2

2(σhj )2
)

If we take the natural log:

ln(phi|j) = ln
1√

2π(σhj )2
exp (−

(vhij − µhj )
2

2(σhj )2
)

= − ln(σhj ) −
ln(2π)
2

−
(vhij − µhj )

2

2(σhj )2
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Calculate capsule activation and pose matrix
Let’s estimate the cost to activate a capsule. The lower the cost, the more likely a capsule will be
activated. If cost is high, the votes do not match the parent Gaussian distribution and therefore a
low chance to be activated.

Let costij be the cost to activate the parent capsule j by the capsule i. It is the negative of the log
likelihood:

costhij = − ln(Phi|j)

Since capsules are not equally linked with capsule j, we pro-rated the cost with the runtime
assignment probabilities rij . The cost from all lower layer capsules is:

costhj =
∑
i
rijcost

h
ij

=
∑
i

−rij ln(p
h
i|j)

=
∑
i
rij

( (vhij − µhj )
2

2(σhj )
2

+ ln(σhj ) +
ln(2π)

2

)

=

∑
i rij(σ

h
j )
2

2(σhj )
2

+ (ln(σhj ) +
ln(2π)

2
)
∑
i
rij

=
(
ln(σhj ) +

1

2
+

ln(2π)

2

)∑
i
rij

=
(
ln(σhj ) + k

)∑
i
rij which k is a constant
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Calculate capsule activation and pose matrix
Using the minimum description length (MDL) principle we have a choice when deciding whether or
not to activate a higher-level capsule.

• Choice 0: if we do not activate it, we must pay a fixed cost of −βu per data-point for
describing the poses of all the lower-level capsules that are assigned to the higher-level
capsule. This cost is the negative log probability density of the data-point under an
improper uniform prior. For fractional assignments we pay that fraction of the fixed cost.

• Choice 1: if we do activate the higher-level capsule we must pay a fixed cost of −βα for
coding its mean and variance and the fact that it is active and then pay additional costs,
pro-rated by the assignment probabilities, for describing the discrepancies between the
lower-level means and the values predicted for them when the mean of the higher-level
capsule is used to predict them via the inverse of the transformation matrix.

A much simpler way to compute the cost of describing a datapoint is to use the negative log
probability density of that datapoint’s vote under the Gaussian distribution fitted by whatever
higher-level capsule it gets assigned to. This is incorrect for reasons explained in the paper, but we
use it because it requires much less computation.

Thus, to determine whether the capsule j will be activated, we use the following equation:

αj = sigmoid
(
λ
(
βα − βu

∑
i

rij −
∑
h
costhj

))
where λ is the inverse temperature parameter 1

temperature .

The βα and βu are not computed analytically. Instead, they’re approximated through training
using the back-propagation and the cost function.
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EM Routing Algorithm

• The EM method fits data points into a a mixture of Gaussian models with alternative calls
between an E-step and an M-step

• The E-step determines the assignment probability rij of each data point to a parent capsule
• The M-step re-calculate the Gaussian models’ values based on rij
• The process is repeated 3 times
• The last aj will be the parent capsule’s output. The 16 µ from the last Gaussian model will
be reshaped to form the 4×4 pose matrix of the parent capsule
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Loss Function

The authors decided to use the ”spread loss” to directly maximize the gap between
the activation of the target class (at) and the activation of the other classes.

The loss from the class i (other than the true label t) is defined as:

Li = (max(0,m− (at − ai)))2

which at is the activation of the target class (true label) and ai is the activation for
class i. The total cost is:

L =
∑
i ̸=t

Li

If the margin between the true label and the wrong class is smaller than m, we
penalize it by the square of m− (at − ai). m is initially start as 0.2 and linearly
increased by 0.1 after each epoch training. m will stop growing after reaching the
maximum 0.9. Starting at a lower margin helps the training to avoid too many dead
capsules during the early phase.
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CapsNet Architecture

Below is the summary of each layer and the shape of their outputs (for MNIST dataset):
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Results on smallNORB dataset

• The smallNORB dataset has gray-level stereo images of 5 classes of toys: airplanes, cars,
trucks, humans and animals.

• The error rate for the Capsule network is generally lower than a CNN model with similar
number of layers as shown below.
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Adversarial Robustness

• The core idea of FGSM (Fast Gradient Sign Method) adversary is to add some
noise on every step of optimization to drift the classification away from the
target class.

• Compute gradient of output w.r.t. change in pixel intensity, then slightly modifies
each pixel by small ϵ in direction that either (1) maximizes loss, or (2) maximizes
classification probability of wrong class.

• The authors also tested the model on the slightly more sophisticated adversarial
attack of the Basic Iterative Method (BIM), which is simply the aforementioned
attack except it takes multiple smaller steps when creating the adversarial image.
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Improvements compared to the original paper

The authors argue that this paper compared to the original Capsules paper overcomes
the following deficiencies:

1. The original paper uses the length of the pose vector to represent the probability
that the entity represented by a capsule is present. To keep the length less than
1, requires an unprincipled non-linearity and this prevents the existence of any
sensible objective function that is minimized by the iterative routing procedure.

2. The original paper also uses the cosine of the angle between two pose vectors
to measure their agreement. Unlike the negative log variance of a Gaussian
cluster, the cosine saturates at 1, which makes it insensitive to the difference
between a quite good agreement and a very good agreement.

3. Finally, the original paper uses a vector of length n rather than a matrix with n
elements to represent a pose, so its transformation matrices have n2 parameters
rather than just n.
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Conclusion



Discussion

Pros:
• Requires less training data

• Position and pose is preserved (Equivariance)

• Robust affine transformations

• Activation vector is easy (?) to interpret

• Less trainable parameters required (77% less for MNIST)

• Great for overlapping objects

• Good for dealing with segmentation
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Discussion

Cons:
• Poor performance ( 11% error) on CIFAR10; generally bad at complex images.

• Still use regural conv layer at first for local feature extraction (Capsules cannot
extract local features?)

• Slow training, due to inner loop (routing by agreement)

• CapsNet does not allow two instances of the same class at the same location
◦ The is called ”crowding”, and it has been observed as well in human vision

• Likes to account for everything in the image

• How to restrict to get certain feature? (Disentagling features)

• Requires a lot of further research (Is there any science in Capsule Theory?)
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Capsule Networks So Far

There have been around 20 works using capsules in the literature.

▶ K. Qiao, C. Zhang, L. Wang, B. Yan, J. Chen, L. Zeng, and L. Tong, “Accurate reconstruction of image
stimuli from human fMRI based on the decoding model with capsule network architecture,”
CoRR, vol. abs/1801.00602, 2018.

▶ D. Wang and Q. Liu, “An Optimization View on Dynamic Routing Between Capsules,” 2018.

▶ P. Afshar, A. Mohammadi, and K. N. Plataniotis, “Brain Tumor Type Classification via Capsule
Networks,” CoRR, vol. abs/1802.10200, 2018.

▶ L. Zhang, M. Edraki, and G. Qi, “CapProNet: Deep Feature Learning via Orthogonal Projections
onto Capsule Subspaces,” CoRR, vol. abs/1805.07621, 2018.

▶ A. Jaiswal, W. AbdAlmageed, and P. Natarajan, “CapsuleGAN: Generative Adversarial Capsule
Network,” arXiv preprint arXiv:1802.06167, 2018.

▶ E. Xi, S. Bing, and Y. Jin, “Capsule network performance on complex data,” arXiv preprint
arXiv:1712.03480, 2017.

▶ R. LaLonde and U. Bagci, “Capsules for Object Segmentation,” arXiv preprint arXiv:1804.04241,
2018.
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Capsule Networks So Far (cont.)

▶ S. S. R. Phaye, A. Sikka, A. Dhall, and D. R. Bathula, “Dense and Diverse Capsule Networks:
Making the Capsules Learn Better,” CoRR, vol. abs/1805.04001, 2018.

▶ A. Mobiny and H. Van Nguyen, “Fast CapsNet for Lung Cancer Screening,” arXiv preprint
arXiv:1806.07416, 2018.

▶ Y. Upadhyay and P. Schrater, “Generative Adversarial Network Architectures For Image Synthesis
Using Capsule Networks,” arXiv preprint arXiv:1806.03796, 2018.

▶ M. T. Bahadori, “Spectral Capsule Networks,” International Conference on Learning
Representations (ICLR Workshop), 2018.

▶ Y. Wang, A. Sun, J. Han, Y. Liu, and X. Zhu, “Sentiment Analysis by Capsules,” in Proceedings of
the 2018 World Wide Web Conference, WWW ’18, (Republic and Canton of Geneva, Switzerland),
pp. 1165–1174, International World Wide Web Conferences Steering Committee, 2018.

▶ K. Duarte, Y. S. Rawat, and M. Shah, “VideoCapsuleNet: A Simplified Network for Action
Detection,” arXiv preprint arXiv:1805.08162, 2018.

▶ F. Deng, S. Pu, X. Chen, Y. Shi, T. Yuan, and S. Pu, “Hyperspectral Image Classification with
Capsule Network Using Limited Training Samples,” Sensors (Basel), vol. 18, Sep 2018.

▶ H. Li, X. Guo, B. Dai, W. Ouyang, and X. Wang, “Neural Network Encapsulation,” 08 2018.
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Capsule Networks So Far (cont.)

▶ C. Xiang, L. Zhang, W. Zou, Y. Tang, and C. Xu, “MS-CapsNet: A Novel Multi-Scale Capsule
Network,” IEEE Signal Processing Letters, pp. 1–1, 2018.

▶ A. Deliège, A. Cioppa, and M. Van Droogenbroeck, “HitNet: a neural network with capsules
embedded in a Hit-or-Miss layer, extended with hybrid data augmentation and ghost capsules,”
arXiv preprint arXiv:1806.06519, 2018.

▶ J. O. Neill, “Siamese capsule networks,” arXiv preprint arXiv:1805.07242, 2018.

▶ Z. Chen and D. Crandall, “Generalized Capsule Networks with Trainable Routing Procedure,”
arXiv preprint arXiv:1808.08692, 2018.

▶ W. Zhao, J. Ye, M. Yang, Z. Lei, S. Zhang, and Z. Zhao, “Investigating Capsule Networks with
Dynamic Routing for Text Classification,” arXiv preprint arXiv:1804.00538, 2018.
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Questions?
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