🛛 +1 (613) 581-8083 — 🗳 contact@vlioutas.com — 🖓 lioutasb — in vasileioslioutas — 🕿 230+ cites (h-index=8)

Vasileios Lioutas

SUMMARY

Machine learning researcher with 5+ years of experience developing cutting-edge AI systems, specializing in autonomous driving simulation and deep learning. Published 16 papers in premier venues (ICML, ICLR, NeurIPS, ACL) with 230+ citations. Led development of novel simulation architectures for realistic multi-agent driving behaviors, successfully transitioning research into commercial products. Currently advancing controllable driving simulation methods through doctoral research at UBC while collaborating with industry partners.

EDUCATION

Ph.D. in Computer Science

University of British Columbia

- Advisor: Dr. Frank Wood
- Thesis: Towards Realistic Controllable Driving Simulators
- Research Focus: Developing generative models for simulating realistic, safe and controllable multi-agent driving behaviors for autonomous vehicles

M.Sc. in Computer Science

Carleton University

- Advisor: Dr. Yuhong Guo
- Thesis: Sequence Modeling with Linear Complexity
- GPA: 12.00/12.00 Senate Medal for Outstanding Academic Achievement

INDUSTRY RESEARCH EXPERIENCE

Inverted AI

PhD Research Scientist (Mitacs Intern)

- Contributed to developing novel deep learning methods (ITRA, TITRATED, CriticSMC, DJINN) for realistic traffic simulation
- Conducted experiments to optimize and improve model performance
- Principal contributor in the research and development of the main commercial research products of the company (DRIVE C, INITIALIZE C, SCENARIO C)
- Developed production code in multiple collaborative projects, conducting code reviews and maintaining unit tests
- Published 4 first-author papers and supported at least 7 other research projects
- Main contributor to the open-source driving simulator called TorchDriveSim

Huawei (Noah's Ark Lab)

Machine Learning Research Associate (including 4-month summer internship)

- Performed research in Multilingual Neural Machine Translation and Model Compression
- Implemented many research methods from the literature
- Successfully delivered compressed neural models according to production requirements
- Published 3 papers in top-tier conferences and filed 1 patent application

MEDIAFORCE.ca

Machine Learning Engineer

- Built two real-time recommendation systems (k-NN and deep learning)
- Designed complete ML pipeline: data collection, processing, model updates, and API serving

TECHNICAL EXPERTISE

- ML Focus: Supervised Learning Reinforcement Learning Transformers Generative Modeling (Diffusion Models, VAEs, etc.) • Variational Inference
- Machine Learning Tools: PyTorch TensorFlow
- Systems: CUDA Distributed Training ML Optimization
- Languages: Python (Expert) C++ Java SQL
- **Tools**: Weights & Biases Pytorch-Lightning MLflow AWS/GCP git Singularity Docker

Expected April 2025 Vancouver, BC

Ottawa, ON

Vancouver, BC

2020

May 2019 - August 2020

February 2018 - August 2018

September 2020 - Present

Montreal, QC

Ottawa, ON

Key Projects

• TorchDriveSim C Open-Source Framework for 2D Driving Simulation	2023 32 stars, 9 contributors
 Fully differentiable execution supporting rendering ego-rotated and ego-centric bird's-eye models, agent types, traffic controls and goals. 	e views, various kinematic
- Adopted by the research community working in autonomous driving	
– Utilized by TorchDriveEnv 🗹, a lightweight reinforcement learning benchmark for autonomous driving	
TaLK Convolutions	2020
Open-Source Novel Neural Architecture	29 stars
- Developed a sequence modeling architecture with linear time complexity to the number of tokens	
– Implemented custom CUDA kernels for Pytorch to support parallelization	
- Produced state-of-the-art results in various natural language tasks	

Awards & Leadership

- NSERC CGS-D Scholarship (2021-2024)
- Best Paper Award, Autonomous Driving: Perception, Prediction and Planning Workshop (2021)
- Graduate Support Initiative (GSI) Award, UBC (2020-2024)
- Senate Medal for Outstanding Academic Achievement, Carleton University (2020)

Selected Publications

- [1] **V. Lioutas**, A. Scibior, M. Niedoba, B. Zwartsenberg, and F. Wood, "Control-ITRA: Controlling the Behavior of a Driving Model", *Under Review*, 2025
- [2] J. Lavington, K. Zhang, V. Lioutas, M. Niedoba, Y. Liu, D. Green, S. Naderiparizi, X. Liang, S. Dabiri, A. Scibior, B. Zwartsenberg and F. Wood, "TorchDriveEnv: A Reinforcement Learning Benchmark for Autonomous Driving with Reactive, Realistic, and Diverse Non-Playable Characters", arXiv:2405.04491, 2024
- [3] **V. Lioutas**, J. Lavington, J. Sefas, M. Niedoba, Y. Liu, B. Zwartsenberg, S. Dabiri, F. Wood, and A. Scibior, "Critic Sequential Monte Carlo", *ICLR*, 2023
- [4] M. Niedoba, J. Lavington, Y. Liu, V. Lioutas, J. Sefas, X. Liang, D. Green, S. Dabiri, B. Zwartsenberg, A. Scibior, and F. Wood, "A Diffusion-Model of Joint Interactive Navigation", *NeurIPS*, 2023
- [5] **V. Lioutas**, A. Scibior, and F. Wood, "TITRATED: Learned Human Driving Behavior without Infractions via Amortized Inference", *TMLR* and *ML4AD workshop at NeurIPS*, 2022
- [6] A. Scibior*, V. Lioutas*, D. Reda, P. Bateni, and F. Wood, "Imagining The Road Ahead: Multi-Agent Trajectory Prediction via Differentiable Simulation", *ITSC* and *ADP3 workshop at CVPR (Best Paper Award)*, 2021
- [7] A. Rashid^{*}, V. Lioutas^{*} and M. Rezagholizadeh, "MATE-KD: Masked Adversarial Text, a companion to Knowledge Distillation", ACL, 2021
- [8] A. Rashid, V. Lioutas, M. Rezagholizadeh, and A. Ghaddar, "Towards Zero-Shot Knowledge Distillation for Natural Language Processing", EMNLP (Oral Presentation), 2021
- [9] V. Lioutas and Y. Guo, "Time-aware Large Kernel Convolutions", *ICML*, 2020
- [10] V. Lioutas, N. Passalis, and A. Tefas, "Explicit ensemble attention learning for improving visual question answering", *Pattern Recognition Letters*, 2018

Selected Patents

[P1] V. Lioutas, A. Rashid, and M. Rezagholizadeh. "Method and system for training a neural network model using adversarial learning and knowledge distillation", US Patent App. US20230222353A1, March 2023